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Abstract

The fracture toughness measurement of ceramics is based on notched specimens. If the notch-root radius is too large, it leads to overestimate
the actual fracture toughness of the material. It is then necessary to control the notch shape and to machine it carefully in order to have
a root-radius small enough (<10�m) to be below the sensitivity threshold of the material. Then, the notch confounds with a sharp crack.
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lternatively, it is proposed in this work to bring a correction to the measured fracture toughness depending on the notch-root
estriction is brought to this radius except that it must be small compared to the notch length.
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. Introduction

The fracture toughness is the capacity of resistance of a
aterial to a crack growth. Whatever the method used, its
easurement requires in general a pre-existing sharp crack
ithin the specimen. In many cases, it is obtained simply
y a saw cut. Sometimes it is followed by a fatigue loading.
ut, in any case the geometry of this sharp crack is difficult

o control, if not impossible in ceramics. If the notch-root
adius is too large, it leads to overestimate the actual fracture
oughness of the material. A rough estimation of the initial
atigue crack length can also be a cause of inaccuracy.

An alternative method called SENB-S is proposed.1–3 It
elies on 3-point bending notched specimens and consists in
ontrolling the notch-root radiusρ of the saw cut estimated
o be one half of the saw cut thicknesse (Fig. 1). Reliable
easures are obtained if the notch is machined very precisely,

eading to a radius smaller than a critical threshold.1,2 This
ound can be empirically determined according to the mi-
rostructure of the material and especially to the grain size.

∗ Corresponding author. Tel.: +33 144 275 322; fax: +33 144 275 259.

In the present analysis no restriction is brought to the no
root radius, the only assumption is that it must be small c
pared to the saw cut length. It is then necessary to br
correction to the apparent measured fracture toughne
the material to get the actual value. It depends of cours
the blunting caused by the rounding. It is determined he
using simultaneously two fracture criteria: an energy a
stress condition. It requires in addition the knowledge o
material strength.

The analysis is based on matched asymptotics, the
parameter being the saw cut thickness. The elastic so
of the 3-point bending problem, or any other kind of load
is approximated by a far and a near field. The far fiel
a rough approximation where the notch is modelled b
thin crack, allowing the definition of an apparent fract
toughness based on the stress intensity factor at the cra
The near field zooms in the vicinity of the rounded end o
notch, providing an accurate stress field closed to the n
root. In this second framework no stress intensity factor
be invoked. To be consistent, these two fields must mat
an intermediate area.

A similar analysis was carried out previously for

E-mail address: dol@ccr.jussieu.fr (D. Leguillon). notched specimens,4 but the method used there could not

955-2219/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jeurceramsoc.2005.02.016



1422 D. Picard et al. / Journal of the European Ceramic Society 26 (2006) 1421–1427

Fig. 1. The 3-point bending specimen,e is the saw cut thickness, the notch-
root radius is estimated to beρ = e/2.

be extended in a straightforward manner to the present ge-
ometry.

2. Asymptotic analysis of the undamaged specimen

The analysis is based on a two-scale asymptotic analysis
in plane strain linear elasticity. The actual displacement field
is denotedU-

e, the indexe being used to recall its dependence
on the saw cut thickness. It is solution to the following set of
equations:


−∇ · σ = 0

σ = C : ∇U-
e

σ · n- = O along the saw cut faces

+remote boundary conditions

(1)

The first equation is the balance of momentum (equilibrium),
σ denotes the stress tensor. The symbol nabla� holds for
derivatives with respect to the Cartesian coordinatesx1 and
x2. The second equation is the constitutive law,C is the elastic
operator relying classically on the Young’s modulusE (MPa)
and the Poisson’s ratioν of the material. The third equation
expresses that the saw cut faces are free of traction. The re-
mote boundary conditions do not play an important role in
the analysis.
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Fig. 2. The notch-root vicinity with a short new crack embedded in the
unbounded inner domain (stretched domain).

antisymmetric mode II is not activated in a 3-point bending
experiment.

It is emphasized thatkI is an apparent stress intensity factor
since it corresponds to a simplified geometry of the saw cut.
No actual intensity factor exists at the root of a rounded notch.
It corresponds to the quantity extracted from experiments,
using notched beam formulas.2

To have a detailed form of the actual solutionU-
e, the ini-

tial domain is stretched by 1/e. The new dimensionless space
variables areyi = xi/e (i = 1, 2). Ase → 0 the corresponding
domain becomes unbounded, it is illustrated onFig. 2. There
is an infinitely long saw cut (dimensionless thickness 1) and
the outer boundary is sent to infinity. This so-called inner do-
main ignores the exact geometry of the specimen. The actual
solution is assumed to expand in the following way:

U-
e(x1, x2) = U-

e(ey1, ey2)

= F0(e)V-
0(y1, y2) + F1(e)V-

1(y1, y2) + · · · (4)

with

lime→0

[
F1(e)

F0(e)

]
= 0

TheV-
i’s are solutions to problems with prescribed behaviour

at infinity, they form the near or inner field. More precisely,
t f the
f
h ations
o diate
a .
(

H t
i g
t

V

In a first step, assuming thate is small compared to th
aw cut length, the actual solution is approximated by:

-
e(x1, x2) = U-

0(x1, x2) + small correction (2

he first termU-
0 is solution to an idealized problem w

n infinitely thin cut (the index 0 meanse = 0), i.e. a per
ectly sharp crack. It is illustrated onFig. 1(left). The smal
orrection in(2) decreases to 0 ase → 0. Obviously this ap
roximation is valid except in a vicinity of the saw cut wh

t becomes meaningless. It is so-called the far field or
uter field. It undergoes the classical singularity at the c

ip:

-
0(x1, x2) = U-

0(0, 0) + kI
√

ru-
I (θ) + · · · (3)

herer andθ stand for the polar coordinates with the origi
he crack tip. The first term of the expansion in(3) is presen
or consistency, it is the irrelevant rigid translation of
rigin. The coefficientkI (MPa m1/2) is the usual openin
ode I stress intensity factor. Because of the symmetrie
hese terms must match at infinity with the behaviour o
ar field near the singular point as described in(3), in order to
ave consistent far and near (outer and inner) represent
f the solution. It means that there exists an interme
rea in which the two expansions(2) and(4) hold true. Eq
4) together with(3) leads to5:

F0(e) = 1; V-
0(y1y2) = U-

0(0, 0); F1(e) = kI
√

e;

V-
1(y1, y2) ≈ √

γ u-
I (θ)

ere,γ = r/e and the symbol≈ holds for “behaves like — a
nfinity”. As before in(3), the first term is irrelevant. Usin
he superposition principle:

-
1(y1, y2) = √

γu-
I (θ) + V̂-

1
(y1, y2)
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whereV̂-
1

is solution to a problem derived from(1) and ex-
pressed in the stretched dimensionless variablesy1 andy2:


−∇y · σ̂ = 0

σ̂ = C : ∇yV̂-
1

σ̂ · n- = −σI · n- along the saw cut faces

V̂-
1

decreases to 0 at infinity

(5)

with

σI = C : ∇y[
√

γu-
I (θ)]

The symbol nabla�y holds for derivatives with respect to
y1 andy2. The third equation expresses once again that the
saw cut faces are free of traction. The last one is the match-
ing condition resulting of the superposition principle. The
debatable point relies on the third equation but it is proved
that6:∫

Σ

σI · n- ds = 0

whereΣ denotes the stretched saw cut faces. It ensures the
problem in(5) to be well-posed, since the resulting moment
also vanishes due to the symmetries of the singular term.

The expansion finally writes:
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Note that the unbounded inner domain makes impossible the

direct computation of the functionŝV-
1
. An approximation

is obtained by artificially bounding the domain at a large
distanceR∞ (large compared toµ and to 1, i.e. the stretched
saw cut thickness, sayR∞ = 400). The vanishing condition
at infinity is written out prescribing either a Neumann or a
Dirichlet boundary condition on the virtual lineΓ ∞:

σ̂ · n- = 0 or V̂-
1 = 0 on Γ ∞

It replaces in(5) the last equation describing the behaviour
at infinity providing a classical boundary value problem.

4. The energy release rate

The following energy balance must hold true:

δWp + δWk + GcδS = 0

The first termδWp is the change in potential energy between
the initial state prior to any crack onset and the final state em-
bedding a new short crack (length�) at the notch root (Fig. 2).
The second oneδWk is the change in kinetic energy and the
last one is the fracture energy. This latter is proportional to the
newly created crack surfaceδS, the scaling coefficient being
t −2

t
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−

U- (x1, x2) = U- (ey1, ey2)

= U-
0(0, 0) + kI

√
e [

√
γu-

I (θ) + V̂-
1
(y1, y2)] + · · · (6)

he functionV̂-
1

is independent of the applied load and of
eometry of the specimen. They intervene in(6) through the
ingle parameterkI .

. Asymptotic analysis of the damaged specimen
ncluding a short crack

Let us now consider a small crack emanating from
otch root (Fig. 2). It is assumed that its length� is smaller
r of the same order of magnitude than the saw cut th
esse:

= µe and µ < +∞
y analogy, the actual solution with the additional crack
ands as (see(6)):

U-
e(x1, x2, �) = U-

e(ey1, ey2, eµ)

= U-
0(0, 0) + kI

√
e[

√
γu-

I (θ) + V̂-
1
(y1, y2, µ)] + . . . (7)

he termV̂-
1

now depends on the dimensionless crack le

, it fulfils the same system of equation than the previouV̂-
1

in (5)) and the additional condition that the new crack fa
re also free of traction. To have homogeneous notation
ewrite:

ˆ
-

1
(y1, y2) = V̂-

1
(y1, y2, 0)
he material fracture toughnessGc (J m ). SinceδWk ≥ 0,
he above condition leads to the Griffith criterion:

δWp

δS
≥ Gc (8)

he left hand side ratio is called the energy release rateG.
The change in potential energy can be expressed as4,5:

δWp = Ψ (U-
e(x1, x2, �), U-

e(x1, x2, 0)) (9)

is a contour integral relying on the Betti’s theorem. For
isplacement fieldsW-

1 andW-
2 satisfying the equilibrium

quations, it is defined by:

(W-
1, W-

2) = 1

2

∫
Γ

[σ(W-
1) · n- · W-

2 − σ(W-
2) · n- · W-

1] ds

(10)

he stress fields involved in(10) relate to the displaceme
elds through the constitutive law:

(W-
i) = C : ∇yW-

i

he integral in(10) is independent of the contourΓ starting
nd finishing on the faces of the notch. For technical rea

he contour in(10)must be taken as large as possible wi
he artificially bounded inner domain (see the end of Sec
).

Using now the asymptotics(6) and(7) in (9), it writes

δWp = k2
I e

A(µ) − A(0)

E∗ d + · · · with E∗ = E

1 − ν2

(11)
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Fig. 3. The dimensionless functiong(µ) (13) vs. the dimensionless crack
extension lengthµ.

whered is the specimen thickness (plane elasticity). The di-
mensionless coefficientsA (either forµ �= 0 orµ = 0) are de-
fined by5:

A(µ) = E∗Ψ (V̂-
1
(y1, y2, µ),

√
γu-

I (θ))

The newly created crack surface is:

δS = �d

and then the above criterion(8) rewrites, thanks to(11):

k2
I
A(µ) − A(0)

µE∗ ≥ Gc (12)

The energy release rate can be expressed in terms of the di-
mensionless functiong(µ):

G = g(µ)

E∗ k2
I with g(µ) = A(µ) − A(0)

µ
(13)

It is a generalization of the Irwin formula (see also(17)below)
andg(µ) → 1 asµ → ∞ (Fig. 3). Obviously, asµ increases
the new crack becomes longer and longer and the saw cut
lengthened by the new crack behaves more and more like a
long crack.

The functiong(µ) is independent of the Young’s modulus
E, but it cannot be proved that it is independent of the Pois-
sons’s ratioν, even if the coefficient 1− ν2 has been singled
o es
o een
c

5

e
G gth
µ

� ical
d

G

Fig. 4. The dimensionless tensionσ̃t(µ) (16)acting ahead of the notch root
prior to any crack onset, vs. the dimensionless distanceµ to the notch root.

Gdiff is the derivative of the potential energy with respect to
the crack surface (up to the sign). It is effective in the anal-
ysis of the growth of a pre-existing crack but leads to some
paradox in many other cases as the present one. Here, this dif-
ferential formGdiff vanishes whatever the applied load and
then can never become larger or equal to the fracture tough-
nessGc, no failure can be predicted. The main explanation
is that the condition(8) is necessary for fracture but not suf-
ficient, except for a sharp crack. Various experiments show
that in general a stress condition must also be accounted for.7

Let us denote byσt(�) the tension acting at a distance�

on the ligament ahead of the notch root prior to any crack
onset. By symmetry, it is the only relevant stress component.
It is a decreasing function of the distance to the notch root
(Fig. 4). The additional stress condition is that this tension
must exceed the material strengthσc all along the putative
crack path, then:

σt(�) ≥ σc

According to the expansion(6) (i.e. the approximation of
the actual solution prior to the crack onset), the above stress
condition rewrites:

kI√
e

[(σI
t (µ) + σ̂t(µ)] ≥ σc (14)

F
g rack
e he
c itical
l
a
s

w

σ

T
a ays a
ut.Fig. 3is plotted forν = 0.3. Nevertheless, different valu
f ν ranging in a usual domain (i.e. from 0.1 to 0.4) have b
hecked, they give almost confounded curves.

. The failure criterion

Indeed, the inequality(12) is an incremental form of th
riffith criterion, the dimensionless crack extension len
is still unknown. Usually, taking the limit forδS → 0 (i.e.
→ 0) in(8)overcomes this difficulty. It leads to the class
efinition of the energy release rate:

diff = lim
δS→0

(
−δWp

δS

)
= −∂Wp

∂S
or a fixedkI , i.e. for a fixed applied load, the inequality(12)
ives a lower bound of the admissible dimensionless c
xtension lengthsµ while (14) gives an upper bound. T
ompatibility between these two bounds provides the cr
engthµc (and�c = µce) for which the two conditions(12)
nd(14)are simultaneously fulfilled. The critical valueµc is
olution to the following equation:

g(µc)

E∗σ̃t(µc)2
= Gc

σ2
ce

(15)

ith

˜ t(µc) = σI
t (µc) + σ̂t(µc) (16)

he functionσ̃t(µ) is plotted inFig. 4 for ν = 0.3. But once
gain it has been checked that the Poisson’s ratio pl
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Fig. 5. The ratioR = k
app
Ic /kIc vs. the square root of the notch-root radius√

ρ (�m1/2) for alumina. Diamonds: experiments,1 solid lines: prediction
(20).

minor role. Different values ofν ranging from 0.1 to 0.4 give
almost confounded curves.

Using the Irwin formula:

Gc = 1

E∗ k2
Ic (17)

wherekIc (MPa m1/2) is the critical value of the mode I stress
intensity factor, also baptised toughness because of its obvi-
ous one to one relationship withGc, the Eq.(15) becomes
dimensionless:

g(µc)

σ̃t(µc)2
= 1

e

k2
Ic

σ2
c

(18)

The dimensionless critical lengthµc is a function of the saw
cut thicknesse and of the material fracture parameters occur-
ring in the right hand side term of the above equation.

The failure criterion involves the apparent stress intensity
factorkI and using either(12)or (14), it finally reads:

kI ≥ kIc

√
1

g(µc)
(19)

6. The toughness correction

l
v

k

T gh-
n ized in
S
d

-
-
-
-

Fig. 6. The ratioR = k
app
Ic /kIc vs. the square root of the notch-root radius√

ρ (�m1/2) for alumina. Diamonds: experiments,2 solid lines: prediction
(20).

Fig. 7. The ratioR = k
app
Ic /kIc vs. the square root of the notch-root radius

√
ρ

(�m1/2) for silicon carbide. Diamonds: experiments,2 solid lines: prediction
(20).

and compare the predictions derived from(20) with
experiments.1,2 They show a satisfying agreement (note the
different vertical scales) and remain within the scattering due
to the experiments. Another cause of some lack of precision
is that data are from different sources. Strengthsσc are not
provided in the referenced papers,1,2 they are taken from In-
ternet. The two solid lines in the following figures correspond

Fig. 8. The ratioR = k
app
Ic /kIc vs. the square root of the notch-root radius

√
ρ

(�m1/2) for silicon nitride. Diamonds: experiments,2 solid lines: prediction
(20).
The right hand side of the inequality(19) is the critica
aluek

app
Ic of the apparent stress intensity factorkI , thus:

app
Ic = kIc

√
1

g(µc)
(20)

his critical valuek
app
Ic corresponds to the apparent tou

ess measured during experiments, as already emphas
ection2. The nextFigs. 5–8plot the ratiokapp

Ic /kIc for four
ifferent materials:

alumina:σc = 220–300 MPa,kIc = 3.8 MPa m1/2,1

alumina:σc = 220–300 MPa,kIc = 2.8 MPa m1/2,2

silicon carbide:σc = 310–400 MPa,kIc = 2.4 MPa m1/2,2

silicon nitride:σc = 400–580 MPa,kIc = 5.4 MPa m1/2,2
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Fig. 9. The implicit representation of functionsσ̃t (horizontal axis) andg
(vertical axis).

to the above mentioned strength bounds. The upper lines are
associated with the highest strengths.

7. Conclusion

The procedure to determine the actual value ofkIc is the
following:

- once the saw cut thicknesse, the apparent toughnessk
app
Ic

and the strengthσc are known,
- solve the following equation derived from(18) and(20),

usingFig. 4to obtainµc:

σ̃t(µc) = σc
√

e

k
app
Ic

- determineg(µc) using Fig. 3 and computekIc from the
following relation (see(20)):

kIc = k
app
Ic

√
g(µc)

In these operationsµc is a dummy parameter. The two steps
can be resumed to a single one considering the implicit curve
derived fromFigs. 3 and 4and plotted inFig. 9, whereσ̃t and
g are respectively in the horizontal and vertical axes. When
σ̃t is known, it provides directly the corresponding value
o

us-
i

ture
t adius
i pen-
i pos-
i ust
b d for
a
F f the
m s no
r terial
s the
a

It is often reported that below a given threshold the mate-
rial is insensitive to the notch-root radius.1,2 This is mainly
due to the fine micro-structure and especially to the grain size
in case of ceramics. Of course such a threshold cannot be ob-
served in the present theoretical approach (Figs. 5–8), since
the only involved parameters, like the Young’s modulus for
instance, are macroscopic ones. They average in a sense all
the microscopic data. As a consequence, the apparent fracture
toughness curves are necessarily smooth from the beginning.
Nevertheless, this threshold is aboutρ = 10�m for the above
materials and concerns only the very beginning part of the
curves inFigs. 5–8(

√
ρ ≤ 3) while the above correction ap-

plies for any (small) notch-root radius. InFigs. 5–8ρ ranges
from ρ = 0 toρ = 144�m.

Acknowledgements

This work was supported by IFP (Institut Franc¸ais du
Pétrole) under the contract no. CO2351.

Appendix A

SeeTable A1.

T
T

µ

0 33
0 34
0 35
0 35
0 36
0 37
0 38
0 38
0 39
0 40
0 41
0 41
0 42
0 42
0 43
0 43
0 44
0 44
0 45
0 45
1 46
1 46
1 46
1 47
1 47
1 47
1.30 0.370 0.885 3.85 0.207 0.948
1.35 0.362 0.888 3.90 0.206 0.948
1.40 0.355 0.892 3.95 0.204 0.948
1.45 0.348 0.895 4.00 0.203 0.948
1.50 0.342 0.898 4.05 0.202 0.949
1.55 0.336 0.901 4.10 0.200 0.949
1.60 0.330 0.903 4.15 0.199 0.949
f g.
Alternatively, the above operations can be performed

ng Table A1in Appendix A.
This procedure allows bringing a correction to the frac

oughness measurement depending on the notch-root r
n SENB specimens and for any other test triggering an o
ng mode at the notch. Only non-symmetric loadings im
ng a mixture of symmetric and anti-symmetric modes m
e avoided. Applied herein to ceramics, it can be use
ny brittle material. The reference curves ofFigs. 3 and 4or
ig. 9 alone are independent of the Young’s modulus o
aterial and it is observed that the Poisson’s ratio play

ole. The procedure requires the knowledge of the ma
trength and the reliability of the final result depends on
ccuracy of its determination.
,

able A1
he functions̃σt(µ) (17)andg(µ) (14) vs. the dimensionless lengthµ

σ̃t(µ) g(µ) µ σ̃t(µ) g(µ)

.00 1.595 0.000 2.55 0.257 0.9

.05 1.406 0.127 2.60 0.254 0.9

.10 1.216 0.293 2.65 0.252 0.9

.15 1.085 0.411 2.70 0.249 0.9

.20 0.977 0.497 2.75 0.247 0.9

.25 0.887 0.562 2.80 0.244 0.9

.30 0.815 0.613 2.85 0.242 0.9

.35 0.756 0.654 2.90 0.240 0.9

.40 0.706 0.687 2.95 0.238 0.9

.45 0.664 0.715 3.00 0.236 0.9

.50 0.627 0.738 3.05 0.234 0.9

.55 0.596 0.758 3.10 0.232 0.9

.60 0.568 0.775 3.15 0.230 0.9

.65 0.544 0.790 3.20 0.228 0.9

.70 0.522 0.803 3.25 0.226 0.9

.75 0.502 0.814 3.30 0.224 0.9

.80 0.484 0.824 3.35 0.223 0.9

.85 0.468 0.833 3.40 0.221 0.9

.90 0.453 0.841 3.45 0.219 0.9

.95 0.440 0.849 3.50 0.217 0.9

.00 0.428 0.855 3.55 0.216 0.9

.05 0.416 0.861 3.60 0.214 0.9

.10 0.406 0.867 3.65 0.213 0.9

.15 0.396 0.872 3.70 0.211 0.9

.20 0.386 0.876 3.75 0.210 0.9

.25 0.378 0.881 3.80 0.208 0.9
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Table A1 (Continued )

µ σ̃t(µ) g(µ) µ σ̃t(µ) g(µ)

1.65 0.324 0.906 4.20 0.198 0.949
1.70 0.319 0.908 4.25 0.196 0.949
1.75 0.314 0.910 4.30 0.195 0.949
1.80 0.309 0.912 4.35 0.194 0.949
1.85 0.305 0.914 4.40 0.193 0.949
1.90 0.301 0.916 4.45 0.192 0.949
1.95 0.296 0.918 4.50 0.191 0.949
2.00 0.292 0.919 4.55 0.190 0.950
2.05 0.289 0.921 4.60 0.189 0.950
2.10 0.285 0.922 4.65 0.188 0.950
2.15 0.281 0.924 4.70 0.187 0.950
2.20 0.278 0.925 4.75 0.186 0.951
2.25 0.274 0.926 4.80 0.185 0.951
2.30 0.271 0.928 4.85 0.184 0.951
2.35 0.268 0.929 4.90 0.183 0.951
2.40 0.265 0.930 4.95 0.182 0.951
2.45 0.262 0.931 5.00 0.181 0.951
2.50 0.260 0.932
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