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Abstract

The fracture toughness measurement of ceramics is based on notched specimens. If the notch-root radius is too large, it leads to overestimat
the actual fracture toughness of the material. It is then necessary to control the notch shape and to machine it carefully in order to have
a root-radius small enough (<1@n) to be below the sensitivity threshold of the material. Then, the notch confounds with a sharp crack.
Alternatively, it is proposed in this work to bring a correction to the measured fracture toughness depending on the notch-root radius. No
restriction is brought to this radius except that it must be small compared to the notch length.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction In the present analysis no restriction is brought to the notch-
root radius, the only assumption is that it must be small com-
The fracture toughness is the capacity of resistance of apared to the saw cut length. It is then necessary to bring a
material to a crack growth. Whatever the method used, its correction to the apparent measured fracture toughness of
measurement requires in general a pre-existing sharp crackhe material to get the actual value. It depends of course on
within the specimen. In many cases, it is obtained simply the blunting caused by the rounding. It is determined herein
by a saw cut. Sometimes it is followed by a fatigue loading. using simultaneously two fracture criteria: an energy and a
But, in any case the geometry of this sharp crack is difficult stress condition. It requires in addition the knowledge of the
to control, if not impossible in ceramics. If the notch-root material strength.
radius is too large, it leads to overestimate the actual fracture  The analysis is based on matched asymptotics, the small
toughness of the material. A rough estimation of the initial parameter being the saw cut thickness. The elastic solution
fatigue crack length can also be a cause of inaccuracy. of the 3-point bending problem, or any other kind of loading,
An alternative method called SENB-S is proposetilt is approximated by a far and a near field. The far field is
relies on 3-point bending notched specimens and consists ina rough approximation where the notch is modelled by a
controlling the notch-root radius of the saw cut estimated  thin crack, allowing the definition of an apparent fracture
to be one half of the saw cut thicknesgFig. 1). Reliable toughness based on the stress intensity factor at the crack tip.
measures are obtained if the notch is machined very precisely,The near field zooms in the vicinity of the rounded end of the
leading to a radius smaller than a critical threshiefdlhis notch, providing an accurate stress field closed to the notch
bound can be empirically determined according to the mi- root. In this second framework no stress intensity factor can
crostructure of the material and especially to the grain size. be invoked. To be consistent, these two fields must match in
an intermediate area.

* Corresponding author. Tel.: +33 144 275 322; fax: +33 144 275 259. A similar analysis was carried out previously for v-
E-mail address: dol@ccr.jussieu.fr (D. Leguillon). notched specimerfsput the method used there could not
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Fig. 1. The 3-point bending specimeris the saw cut thickness, the notch-
root radius is estimated to he=e/2.

be extended in a straightforward manner to the present ge-
ometry.

1

Fig. 2. The notch-root vicinity with a short new crack embedded in the
unbounded inner domain (stretched domain).

2. Asymptotic analysis of the undamaged specimen . ) . ] ] ] ]
antisymmetric mode 1l is not activated in a 3-point bending
The analysis is based on a two-scale asymptotic analysiseXPeriment. _ _ _
in plane strain linear elasticity. The actual displacement field  Itis emphasized that is an apparent stress intensity factor

is denoteds¢, the indexe being used to recall its dependence since it corresponds to a simplified geometry of the saw cut.
on the saw cut thickness. It is solution to the following set of NO actual intensity factor exists at the root of a rounded notch.

equations: It c;orresponds to the quantity extracted from experiments,
using notched beam formul3s.
—-V.0=0 To have a detailed form of the actual solutigh, the ini-
o=C:VU* 1 tial domain is stretched by d/The new dimensionless space
o -n = Oalongthe saw cut faces (1) variables arg; =x;le (i=1, 2). Ase — 0 the corresponding

domain becomes unbounded, it is illustrated=amn 2 There
is an infinitely long saw cut (dimensionless thickness 1) and
The first equation is the balance of momentum (equilibrium), the outer boundary is sent to infinity. This so-called inner do-
o denotes the stress tensor. The symbol nablaolds for main ignores the exact geometry of the specimen. The actual
derivatives with respect to the Cartesian coordinatesnd solution is assumed to expand in the following way:
x2. The second equation is the constitutive |as the elastic . .
operator relying classically on the Young’s modufi@vPa) Ut(x1, x2) = U(ey1, ey2)
and the Poisson’s ratio of the material. The third gquation = Fole)VO(y1, y2) + Fi(e)Vi(y1, yo) + - -+ (4)
expresses that the saw cut faces are free of traction. The re-
mote boundary conditions do not play an important role in with
the analysis.

In a first step, assuming thatis small compared to the lim.—o {
saw cut length, the actual solution is approximated by:

+remote boundary conditions

Fi(e)] _
Fo(e)} =0

TheV'’s are solutions to problems with prescribed behaviour
at infinity, they form the near or inner field. More precisely,
The first term{? is solution to an idealized problem with  these terms must match at infinity with the behaviour of the
an infinitely thin cut (the index 0 meanrs=0), i.e. a per- far field near the singular point as describe@3)) in order to
fectly sharp crack. Itis illustrated dfig. 1 (left). The small have consistent far and near (outer and inner) representations
correction in(2) decreases to 0 as— 0. Obviously this ap-  of the solution. It means that there exists an intermediate
proximation is valid except in a vicinity of the saw cut where area in which the two expansio(®) and(4) hold true. Eq.

it becomes meaningless. It is so-called the far field or the (4) together with(3) leads t3:

outer field. It undergoes the classical singularity at the crack 0 0
tip: Fo(e) =1; V°(y1y2) =U"(0,0); Fie) = kiv/e;

UO(x1. x2) = UO0.0)+ ki /7t (6) + - @ VoL~

U¢(x1, x2) = U%(x1, x2) + small correction 2)

wherer andg stand for the polar coordinates with the originat  Here,y =rle and the symbak holds for “behaves like — at
the crack tip. The first term of the expansior(®)is present  infinity”. As before in(3), the first term is irrelevant. Using
for consistency, it is the irrelevant rigid translation of the the superposition principle:
origin. The coefficient; (MPant/) is the usual opening 1

i i i v )= yu'(0) + V( )
mode | stress intensity factor. Because of the symmetries, the¥ (Y1, y2 yu v (y1, y2
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Where\i/1 is solution to a problem derived frod) and ex-
pressed in the stretched dimensionless variahl@ndys:

-V,-6=0
=C:V,

-n = —o' - n alongthe saw cutfaces

1

(e}
<0

(6)

Q>

\:/l decreasesto 0 atinfinity
with
o' =C:V,[/yu'(6)]
The symbol nablav, holds for derivatives with respect to

y1 andy,. The third equation expresses once again that the
saw cut faces are free of traction. The last one is the match-

ing condition resulting of the superposition principle. The
debatable point relies on the third equation but it is proved
thaf:

/ o nds=0
z

1423

Note that the unbounded inner domain makes impossible the

direct computation of the function@l. An approximation

is obtained by artificially bounding the domain at a large
distanceR* (large compared tp and to 1, i.e. the stretched
saw cut thickness, sa§> =400). The vanishing condition
at infinity is written out prescribing either a Neumann or a
Dirichlet boundary condition on the virtual ling>:

5.n=0 or V'=0onr®

It replaces in(5) the last equation describing the behaviour
at infinity providing a classical boundary value problem.

4. The energy release rate

The following energy balance must hold true:
SWp + (SWk + GcSS = 0

The first termW,, is the change in potential energy between

where X denotes the stretched saw cut faces. It ensures theth€ initial state prior to any crack onset and the final state em-

problem in(5) to be well-posed, since the resulting moment
also vanishes due to the symmetries of the singular term.
The expansion finally writes:

U*(x1, x2) = U’(ey1, ey2)
= U%0,0)+ kive [Vyu'®) + VoL vl +--- (6)

The function\”_/l is independent of the applied load and of the
geometry of the specimen. They intervené@ipthrough the
single parametek;.

3. Asymptotic analysis of the damaged specimen
including a short crack

Let us now consider a small crack emanating from the
notch root Fig. 2). It is assumed that its lengthis smaller
or of the same order of magnitude than the saw cut thick-

nesse.
L=pe and pu < —+oo

By analogy, the actual solution with the additional crack ex-
pands as (se@)):

U®(x1, x2, £) = U’(ey1, ey2, ept)
= U0, 0)+ kel 7u' (6) + V' (1, y2. ] + .. (7)

The term\A_/l now depends on the dimensionless crack length

w, it fulfils the same system of equation than the previgus
(in (5)) and the additional condition that the new crack faces

bedding a new short crack (lengthat the notch rootiig. 2).

The second oné&Wy is the change in kinetic energy and the
last one is the fracture energy. This latter is proportional to the
newly created crack surfaés, the scaling coefficient being
the material fracture toughne&k (J m2). SincesWy >0,

the above condition leads to the Griffith criterion:

SWp
- 8
5S ®)
The left hand side ratio is called the energy releaseGate
The change in potential energy can be expresske as

9)

¥ is a contour integral relying on the Betti’'s theorem. For any
displacement field$¥* and W2 satisfying the equilibrium
equations, it is defined by:

> Ge¢

—8Wp = (U (x1, x2, £), U(x1, x2, 0))

vt W) = / (WY -1 - W2 = o(W?) - - W'ds
I
(10)

The stress fields involved ifi0) relate to the displacement
fields through the constitutive law:

o(W)=C: VW

The integral in(10) is independent of the contout starting
and finishing on the faces of the notch. For technical reasons,
the contour in10) must be taken as large as possible within
the artificially bounded inner domain (see the end of Section
3).

Using now the asymptotig®) and(7) in (9), it writes

are also free of traction. To have homogeneous notations we

rewrite:

A1 ~1
V'(y1, y2) = V' (y1, y2. 0)

E
1—12
(11)

with E* =

_ @AW —A0,

—8§Wp =
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Fig. 3. The dimensionless functigsfu) (13) vs. the dimensionless crack
extension lengthu.

Fig. 4. The dimensionless tensiér(i) (16)acting ahead of the notch root
prior to any crack onset, vs. the dimensionless distantethe notch root.

whered is the specimen thickness (plane elasticity). The di-
mensionless coefficients(either foru # 0 or . =0) are de-
fined by:

A(p) = E*U(V (1, y2, 1), /7' (0))

The newly created crack surface is:

GY is the derivative of the potential energy with respect to
the crack surface (up to the sign). It is effective in the anal-
ysis of the growth of a pre-existing crack but leads to some
paradox in many other cases as the present one. Here, this dif-
ferential formGY™ vanishes whatever the applied load and
then can never become larger or equal to the fracture tough-
nessGe, no failure can be predicted. The main explanation
is that the conditiorf8) is necessary for fracture but not suf-
ficient, except for a sharp crack. Various experiments show
that in general a stress condition must also be accountéd for.
) Let us denote by, (¢) the tension acting at a distanée

on the ligament ahead of the notch root prior to any crack
.onset. By symmetry, it is the only relevant stress component.

8S = 4d
and then the above criterigB) rewrites, thanks t¢11):

@AW A0 _

o ¢ (12

The energy release rate can be expressed in terms of the d

mensionless functiog():

_ &) A(n) — A(Q)

E*

G k2 with g(u) = (13)

Itisageneralization of the Irwin formula (see a{8@)below)
andg(u) — 1 asu — oo (Fig. 3). Obviously, agu increases

the new crack becomes longer and longer and the saw cu

lengthened by the new crack behaves more and more like
long crack.

The functiong(w) is independent of the Young’s modulus
E, but it cannot be proved that it is independent of the Pois-
sons’s ratiov, even if the coefficient - 12 has been singled
out.Fig. 3is plotted forv =0.3. Nevertheless, different values
of vranging in a usual domain (i.e. from 0.1 to 0.4) have been
checked, they give almost confounded curves.

5. The failure criterion

Indeed, the inequality1?2) is an incremental form of the
Griffith criterion, the dimensionless crack extension length
w is still unknown. Usually, taking the limit fo8S — O (i.e.
¢ — 0)in(8)overcomes this difficulty. Itleads to the classical
definition of the energy release rate:

(-5%)

GIf — |im -
3S

§S—0

It is a decreasing function of the distance to the notch root
(Fig. 4). The additional stress condition is that this tension
must exceed the material strengthall along the putative
crack path, then:

oy(£) = o¢

According to the expansio(6) (i.e. the approximation of

;the actual solution prior to the crack onset), the above stress

condition rewrites:
ki
Je

For a fixedk, i.e. for a fixed applied load, the inequal{ti2)
gives a lower bound of the admissible dimensionless crack
extension lengthg while (14) gives an upper bound. The
compatibility between these two bounds provides the critical
lengthuc (and£; = puce) for which the two condition$12)
and(14) are simultaneously fulfilled. The critical valye is
solution to the following equation:

[(o (1) + 6,(1)] = ¢ (14)

8(uc) _ &
E*Gi(uc)?  ode (15)
with
or(pe) = th () + 6:(pec) (16)

The functiona, (1) is plotted inFig. 4 for v=0.3. But once
again it has been checked that the Poisson’s ratio plays a
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Fig. 5. The ratioR = ki¥"/ kic vs. the square root of the notch-root radius
JP (wm2) for alumina. Diamonds: experimenitssolid lines: prediction
(20).

minor role. Different values of ranging from 0.1 to 0.4 give
almost confounded curves.
Using the Irwin formula:

17

wherek,c (MPanmt?) is the critical value of the mode | stress
intensity factor, also baptised toughness because of its obvi-
ous one to one relationship with;, the Eq.(15) becomes
dimensionless:

8(kc) _ }@
5t(,U~c)2 e ¢

The dimensionless critical length is a function of the saw
cut thicknesg and of the material fracture parameters occur-
ring in the right hand side term of the above equation.

The failure criterion involves the apparent stress intensity
factork) and using eithe12) or (14), it finally reads:

[ 1
ki > kic m

6. The toughness correction

(18)

(19)

The right hand side of the inequalif9) is the critical
valuek('’ of the apparent stress intensity fackgrthus:

1

2019 (20)

K — ke

This critical valueky® corresponds to the apparent tough-

ness measured during experiments, as already emphasized i
Section2. The nextFigs. 5-8plot the ratiok> "/ ki for four
different materials:

alumina:o = 220-300 MPak;c = 3.8 MPant/3!
alumina:oc = 220-300 MPak. = 2.8 MPa nt/2,2
silicon carbides¢ = 310-400 MPakc = 2.4 MPa /22
silicon nitride:oc = 400-580 MPak;c = 5.4 MPant/2 2

1425
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Fig. 6. The ratioR = kj**/ kic vs. the square root of the notch-root radius
/P (um¥?) for alumina. Diamonds: experimeritssolid lines: prediction
(20).
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Fig. 7. TheraticR = ki*/ kic vs. the square root of the notch-root radiis
(wm?) for silicon carbide. Diamonds: experimentsolid lines: prediction
(20).

and compare the predictions derived fro(20) with
experiments:? They show a satisfying agreement (note the
different vertical scales) and remain within the scattering due
to the experiments. Another cause of some lack of precision
is that data are from different sources. Strengthsire not
provided in the referenced papér$they are taken from In-
ternet. The two solid lines in the following figures correspond

1.4

1.2

|
1.0

0.8

0

Fig. 8. TheraticR = ki*/ kic vs. the square root of the notch-root radiis
(wm?2) for silicon nitride. Diamonds: experimertssolid lines: prediction
(20).
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12 Itis often reported that below a given threshold the mate-

rial is insensitive to the notch-root radili$. This is mainly

due to the fine micro-structure and especially to the grain size

in case of ceramics. Of course such a threshold cannot be ob-

served in the present theoretical approdeigg. 5-§, since

0.6 the only involved parameters, like the Young's modulus for

instance, are macroscopic ones. They average in a sense all

the microscopic data. As a consequence, the apparent fracture

toughness curves are necessarily smooth from the beginning.

Nevertheless, this threshold is abgut 10pm for the above

0.0 ‘ . r . . . . materials and concerns only the very beginning part of the
00 0204 06 08 1O 1214 16 curves inFigs. 5-8(,/p < 3) while the above correction ap-

plies for any (small) notch-root radius. Figs. 5-8p ranges

from p=0top=144pm.

0.8

0.4

0.2

Fig. 9. The implicit representation of functioés (horizontal axis) ang
(vertical axis).

to the above mentioned strength bounds. The upper lines arey cknowledgements
associated with the highest strengths.
This work was supported by IFP (Institut Frame du

Petrole) under the contract no. CO2351.
7. Conclusion

The procedure to determine the actual valué,efs the Appendix A
following: SeeTable Al
- once the saw cut thicknessthe apparent toughnesg™"
and the strength are known, TableAl _ _
- solve the following equation derived fl’O(‘llB) and (20)’ The functionss; () (17) andg(u) (14)vs. the dimensionless length
usingFig. 4to obtainuc: Iz 61(n) s(w) Iz AD) 8(w)
Gor/e 0.00 1.595 0.000 2.55 0.257 0.933
(1) = CT 0.05 1.406 0.127 2.60 0.254 0.934
kPP 0.10 1.216 0.293 2.65 0.252 0.935
. . . 0.15 1.085 0.411 2.70 0.249 0.935
- deterr.n|neg(,u(5) US|ng F|g 3 and Compute’qc from the 0.20 0.977 0.497 2.75 0.247 0.936
following relation (se€20)): 0.25 0.887 0.562 2.80 0.244 0.937
0.30 0.815 0.613 2.85 0.242 0.938
ke = k2P /o) 0.35 0.756 0.654 2.90 0.240 0.938
o =kic™ v gle) 0.40 0.706 0.687 2.95 0.238 0.939
In these operationg. is a dummy parameter. The two steps 0-45 0.664 0.715 3.00 0.236 0.940
can be resumed to a single one considering the implicit curve 0.50 0.627 0.738 3.05 0.234 0.941
derived fromFigs. 3 and 4nd plotted irFig. 9, wheres; and 0-55 0.596 0.758 310 0.232 0.941
19S. 5 p 9.9V 1 0.60 0.568 0.775 3.15 0.230 0.942
g are respectively in the horizontal and vertical axes. When g g5 0.544 0.790 3.20 0.228 0.942
a; is known, it provides directly the corresponding value 0.70 0.522 0.803 3.25 0.226 0.943
of . 0.75 0.502 0.814 3.30 0.224 0.943
Alternatively, the above operations can be performed us- 0.80 0.484 0.824 3.35 0.223 0.944
ina Table ALin Aopendix A 0.85 0.468 0.833 3.40 0.221 0.944
gla Pp o , 0.90 0.453 0.841 3.45 0.219 0.945
This procedure allows bringing a correction to the fracture g gg 0.440 0.849 350 0.217 0.945
toughness measurement depending on the notch-root radiusi.oo 0.428 0.855 3.55 0.216 0.946
in SENB specimens and for any other test triggering an open-1.05 0.416 0.861 3.60 0.214 0.946
ing mode at the notch. Only non-symmetric loadings impos- 110 0.406 0.867 3.65 0.213 0.946
i ixture of symmetric and anti-symmetric modes must 115 0.396 0.872 310 0.211 0.947
Ing a mix Y : ymm . 0.386 0.876 3.75 0.210 0.947
be avoided. Applied herein to ceramics, it can be used for 1 25 0.378 0.881 3.80 0.208 0.947
any brittle material. The reference curvesafs. 3 and 4r 1.30 0.370 0.885 3.85 0.207 0.948
Fig. 9alone are independent of the Young’s modulus of the 1.35 0.362 0.888 3.90 0.206 0.948
1.40 0.355 0.892 3.95 0.204 0.948

material and it is observed that the Poisson’s ratio plays no

le. The procedure requires the knowledge of the material ;- 0.348 0.895 4.00 0.203 0.948
role. P - req X 9 1.50 0.342 0.898 4.05 0.202 0.949
strength and the reliability of the final result depends on the 1 55 0.336 0.901 4.10 0.200 0.949
accuracy of its determination. 1.60 0.330 0.903 4.15 0.199 0.949
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Table Al Continued) References
Iz ai(1) HD Iz Q) 8(w) o _ _
165 0324 0.906 4.20 0.198 0.949 1. tl\hsh;]da, T. e;ndfljanakh' Y.(,j Eflfect';;f:lotcg-root r?dluslgg;h%f;acture
1.70 0.319 0.908 4.95 0.196 0.949 6ooueg_enoessso a fine-grained alumi m. Ceram. Soc., ,77(2),
L.75 0.314 0.910 4.30 0.195 0.949 2. Damani, R., Gstrein, R. and Danzer, R., Critical notch-root radius effect
1.80 0.309 0.912 4.35 0.194 0.949 in SENB-S fract ¢ h testintl Eur. C Soc.. 1996. 16
1.85 0.305 0.914 4.40 0.193 0.949 1:95 702- racture toughness testing.Eur. Ceram. Soc., , 16,
1.90 0.301 0.916 4.45 0.192 0.949 3G _t'.G A. Eracture tough i . d . it
195 0296 0918 4.50 0191 0.949 . Gogotsi, G. A., Fracture toughness of ceramics and ceramic composites.
Ceram. Int., 2003,29, 777-784.

2.00 0.292 0.919 4.55 0.190 0.950 . .

4. Leguillon, D. and Yosibash, Z., Crack onset at a v-notch. Influ-
2.05 0.289 0.921 4.60 0.189 0.950 f th wch ti diugit. J. F 2003 122(1-2). 1
2.10 0.285 0.922 4.65 0.188 0.950 grl‘ce of the noteh tip radiusnr. /. Fracture,  122(1-2), 1=
2.15 0.281 0.924 4.70 0.187 0.950 Lo . . . .

5. Leguillon, D. and Asymptotic, numerical analysis of a crack branching
2.20 0.278 0.925 4.75 0.186 0.951 . isotroni terialsEur J. Mech. A/Solids. 1993. 12(1). 33
2.25 0.274 0.926 4.80 0.185 0.951 QI”O”"SO fopic materiaistur. J. Mech. ASolids, 12(1), 33—
2.30 0.271 0.928 4.85 0.184 0.951 .' . . . . .
235 0.268 0.929 4.90 0.183 0.951 6. llz;ziasrdé 'D:.r,a:chéD. thesis in preparation, University P. and M. Curie,
2.40 0.265 0.930 4.95 0.182 0.951 . y Lo

2

245 0.262 0.931 500 0.181 0.951 7. Leguillon, D., Strength or toughness? A criterion for crack onset at a

2.50 0.260 0.932 notch. Eur. J. Mech. A/Solids, 2002,21, 61-72.
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